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We solve the problem of magnetic field generation by a laminar flow of conducting 
fluid with helical (screw-like) streamlines for large magnetic Reynolds numbers, R,. 
Asymptotic solutions are obtained with help of the singular perturbation theory. 
The generated field concentrates within cylindrical layers whose position, the 
magnetic field configuration and the growth rate are determined by the distribution 
of the angular, SZ, and longitudinal, V,, velocities along the radius. The growth rate 
is proportional to RS. When SL and V, are identically distributed along the radius, 
the asymptotic forms are of the WKB type; for different distributions, singular-layer 
asymptotics of the Prandtl type arise. The solutions are qualitatively different from 
those obtained for solid-body screw motion. The generation threshold strongly 
depends on the velocity profiles. 

1. Introduction 
A laminar flow with helical (screw-like) streamlines is known to be one of the 

simplest flows of a conducting fluid that is capable of magnetic field generation. This 
property was discovered by Lortz (1968) and Ponomarenko (1973), and further 
investigated by Gailitis & Freiberg (1976, 1980) and recently by Roberts (1987) for 
a model of a solid-body conductive cylinder in axial helical motion. The generation 
properties of a helical Couette-Poiseuille flow have been numerically investigated by 
Solovyev (1985, 1987). 

The kinematic screw dynamo considered by Ponomarenko was classified as a slow 
dynamo: the growth rate of any magnetic mode tends to zero when the magnetic 
Reynolds number increases (see Zeldovich, Ruzmaikin & Sokoloff 1983, $4.3). This 
property is due to the fact that magnetic diffusivity plays a key role in the generation 
process, producing the radial magnetic field component a t  the expense of the 
azimuthal one in a cylindrically symmetric laminar flow. The differential rotation 
(concentrated a t  the cylinder surface in the case of solid-body motion) produces an 
azimuthal field from the radial one while the longitudinal shear, which draws apart 
oppositely directed magnetic lines, opposes a destructive decrease in the radial scale 
of the generated non-axisymmetric magnetic field. However, Gilbert (1988) notes 
that even though the growth rate of any mode decreases with the magnetic Reynolds 
number R,, at  any given R, the growth rate is maximal for a certain (small-scale) 
mode with azimuthal and longitudinal scales proportional to RL. Moreover, the 
value of this maximum does not depend on R, for R, + 00. According to  a general 
classification proposed by Molchanov, Ruzmaikin & Sokoloff (1985, figure 5 b ) ,  



40 A .  Ruzrnaikin, D. Sokoloff and A .  M .  Xh>ukurov 
dynamos of this type should be properly called intermediate rather than fast. As 
shown below (see also Gilbert 1988), the screw dynamo with a smooth velocity field 
is slow. 

The relatively low value of the magnetic Reynolds number required for the field 
self-excitation, R,,,, is an attractive property of the screw dynamo. For piecewise 
constant distributions of the angular velocity and longitudinal velocity the minimal 
threshold value is as low as R,,, z 15-17 (Gailitis & Freiberg 1976, 1980). This high 
efficiency of generation makes promising laboratory realizations of the screw 
dynamo, either in a directed experiment (Gailitis, Freiberg & Lielausis 1977 ; see also 
Kirko 1985) or in bulk flows of liquid sodium in industrial devices, e.g. in breeder 
reactors (Kirko 1985). 

On the other hand, an extremely simple form of the motion, which generates 
magnetic fields in this case, is widespread in nature and the screw dynamo may 
undoubtedly act in astrophysical objects. For example, large-scale screw motions are 
believed to be present in astrophysical jets - powerful plasma outflows from nuclei 
of galactic and extragalactic active objects (see, e.g. the review of Begelman, 
Blanford & Rees 1984). Magnetic fields provide the synchrotron radiation of the jets 
and, probably, their collimation and confinement. The screw dynamo may prove 
to be one of the main, if not the principal, source of magnetic fields in these 
spectacular active objects. 

As shown by Lortz (1968) and Ponomarenko (1973), for the screw motion of a rigid 
cylinder (52 = const, V, = const for r < ro and 52 = 0, V, = 0 for r > ro)  the generated 
field is concentrated a t  the discontinuity of the velocities, r = ro ; the growth rate y 
of any mode proves to be inversely proportional to the cubic root of the magnetic 
Reynolds number, y K RS.  The dominant magnetic mode has, a t  the radius where 
the field is maximal, a helical magnetic line whose pitch is equal to the pitch of the 
streamlines, m l k  = - VJ52, where m and k are the azimuthal and longitudinal 
wavenumbers of the field, respectively. 

It is clear, however, that  flows of viscous fluids are characterized by smooth 
velocity distributions Q(r)  and V,(r) ; consequently, the fields generated by a helical 
flow of a fluid can have properties radically differing from those for the case of rigid 
motion. The problem of the hydromagnetic screw dynamo is much more versatile 
from the physical point of view but it cannot be solved as simply as the rigid-body 
dynamo model. In  this case an appropriate method of solution is provided by the 
asymptotic methods of fluid mechanics. 

Here we solve the problem of the hydromagnetic screw dynamo with use of 
singular perturbation theory for large values of the magnetic Reynolds number ; the 
asymptotic solutions that arise are either of the WKB or of the singular-layer type 
with power-law expansions in the asymptotic parameter (we call the latter magnetic- 
layer asymptotics bearing in mind their similarity to Prandtl’s boundary layers in 
hydrodynamics). The induction equation contains a small coefficient R;I a t  the 
Laplacian, which suggests that  for R, b 1 the magnetic field concentrates within 
thin layers (or, possibly, ropes and even points for other flows - cf. Sokoloff, 
Shukurov & Ruzmaikin 1983). Hence, an optimal way to derive the solution is to 
employ singular perturbation theory. In hydromagnetic dynamo problems all three 
components of the magnetic field are essentially non-negligible, and we use extensions 
of the perturbation techniques appropriate to systems of equations (e.g. Maslov & 
Fedorjuk 1981). Experience with these methods indicates that one or two leading 
orders in the solution give quite realistic estimates of the eigenvalues (the field 
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growth rates) even for values of the asymptotic parameter as low as 3-5 (cf. 
Baryshnikova & Shukurov 1987). In  addition, it should be recognized that the 
perturbation series we deal with are of an asymptotic nature, i.e. they may be 
divergent. Thus, it seems wise to calculate only a few terms, given that the essential 
physics has been retained. 

When magnetic configurations are highly concentrated in space, any homogeneous 
boundary conditions are easily fulfilled because of a sharp decrease of the field with 
distance from the singular layer. When the electrical conductivity is uniform, 
vanishing of the field a t  infinity (at least as r -2)  is the only relevant boundary 
condition. In the case of non-uniform conductivity, e.g. when the generation region 
is surrounded by an insulator, this boundary condition is an approximate one and is 
valid only until the size of the conductive region greatly exceeds the thickness of a 
layer where the magnetic field is concentrated. In principle, the technique of matched 
asymptotic expansions can be used to incorporate specific boundary conditions posed 
a t  a finite distance from the singular layer. As is shown by the numerical calculations 
of Solovyev (1985), the hydromagnetic screw dynamo is relatively insensitive to the 
choice of boundary conditions even for moderate Reynolds numbers. 

We consider a cylindrically symmetric flow which is uniform along the symmetry 
axis. In  some applications where the ratio of longitudinal to  radial dimensions of the 
generation region is not very large, the effect of the finite length of the cylinder can 
be considerable. (In astrophysical jets this ratio is very large and the cylinder can be 
considered as infinite.) The ends of the cylinder can be described through the 
introduction of a weak dependence of the velocity field on the longitudinal 
coordinate ; otherwise, one can consider a flow with streamlines winding around a 
torus of large radius (Lortz 1968). I n  the latter case the longitudinal boundary 
conditions reduce to the periodicity condition kR = n, where R is the torus' larger 
radius, k is the longitudinal wavenumber of the field, and n is an integer. This results 
in quantization of the longitudinal wavenumber. 

2. Basic equations and asymptotic estimates 

incompressible conducting fluid with the velocity field given by 
Consider the generation of a magnetic field by a fixed axisymmetric flow of 

V = (0, rQ(r ) ,  V,(r)> ( 1 )  

in polar cylindrical coordinates ( r ,  4, z>. Evolution of the magnetic field H i s  governed 
by the induction equation 

where R, is the magnetic Reynolds number. We use dimensionless quantities with 
the characteristic radius r*, dependent on the chosen velocity field, as the unit 
length. When the angular and longitudinal velocities are measured in units of 0, and 
Vz*, respectively, the combination .*/(a: r i  + V,",); becomes the unit of time. The 
magnetic Reynolds number is defined as 

Equation (2) is valid for a uniform magnetic diffusivity, v,. 
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Since the velocity field (1) is axisymmetric, homogeneous along the z-axis and 
time-independent, the normal modes of the generated magnetic field have the 
following form : 

H = H ,  exp (yt + im4 + ikz), (3) [::I 
where the amplitudes H , ,  H , ,  and H ,  are functions of the radius, while the growth 
rate y and the wavenumbers m and k are, of course, integer and real constants. 

The components of the induction equation (2) are now given by 

2im 
y H ,  + i(mQ+ kV,) H ,  = RI;: { [: 2 ( r  $) - - k2 

We note immediately that the z-component of the field does not enter the first two 
equations, (4) and ( 5 ) ,  and they can be solved autonomously. We stress, however, 
that this does not imply that a two-dimensional field with H ,  = 0 can be generated. 
For non-vanishing H ,  equation (6) has only non-trivial solutions for H , .  Below, we 
show that the components H ,  and H ,  have differing orders of magnitude in the 
asymptotic parameter R, and, therefore, the solenoidality of the field WH = 0 
requires the presence of H , .  Note also that equation (6) is fulfilled exactly for H ,  
derived from V H  = 0 and for H, and H, obtained from (4) and (5) (Solovyev 1985). 
Thus. after H ,  and H ,  have been derived from (4) and ( 5 ) ,  H ,  can be easily found from 
the solenoidalitv condition as 

Let us begin with a qualitative analysis of the system (4)-(6). We distinguish the 
terms essential for the field generation. First, in (4) the last term in the braces is the 
source for the radial field component. When m = 0,  it  vanishes and the field decays 
in accordance with Cowling's theorem. This term also vanishes for finite m and 
v, = 0, hence we expect that Re y + 0 for R, + 00, i.e. the considered dynamo is a 
slow one. 

The term including rdQ/dr on the right-hand side of ( 5 ) ,  which describes the 
drawing out of the radial field in the azimuthal direction by the differential rotation, 
is also essential for the field amplification. The field would decay without it. It is 
known, however, that the differential rotation and magnetic diffusion alone are not 
sufficient for an infinitely long maintenance of the field (see Moffatt 1978). Therefore, 
we can see in advance that the advection terms featuring V, on the leftbhand sides 
of (4)-(6) are of vital importance for the screw dynamo. 

The radial part of the Laplace operator, ( l / r )  (dldr) ( r  dldr),  ensures decay of t8he 
generated field a t  r +  co ; its presence is necessary for fulfilment, of the boundary 
conditions. Of course, the terms that include y are also necessary. 

Construction of the asymptotic solution is based on the requirement that all t8he 
above-mentioned terms be present in the lowest-order equations of thc perturbation 
theory. 
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Let the characteristic radial scale of the field be such that the symbolic asymptotic 
estimate dldr  N R$ holds, with S still unknown. Then 

Ril  d2H,/dr2 N Rg-’H,. 

The field generation would be effective only when the latter term and the source 
RG12imH,lr2 on the right-hand side of (4) are of the same order in R,, i.e. when 
RgH, - H,. Turning now to (5), we obtain H, - RZ-lH, from the asymptotic 
equality H,rdQ/dr - Ri1d2Hd/dr2. Hence, we obtain 26- I = -2S ,  i.e. S = a. 

Therefore. 

Equation (6) now gives H, N &mHr N H,. 

Next, the terms on the left-hand sides of (4)-(6) are of the same order in R, as the 
essential right-hand-side terms only when y + i(mS2 + kV,) N R$, which means that 

Re y - R$, (7a) 

Imy+mS2+kVZ - R;;. (7 b )  
Equation 7 ( a )  gives the asymptotic order of the growth rate. It should be 

remembered that we consider solutions whose radial scale is much smaller than the 
characteristic flow scales. For this reason our solutions do not describe the case of the 
rigid cylinder where the velocity profiles are discontinuous (formally, of zero 
characteristic scale) and for which y - RS. It is clear from the discussion above that 
the approximation of a rigid cylinder can be applied to realistic velocity profiles only 
when the velocity jump is smeared over a radius interval not exceeding r* R d  in 
width ; otherwise, the asymptotic forms obtained here are applicable. Presuming that 
the thickness of the layer where the velocity can suffer a jump is of the order of 
r* Re-; (where Re is the hydrodynamic Reynolds number), we obtain as a necessary 
condition for applicability of the rigid-body screw dynamo model that Re2 < R,. 
Note also that one can envisage velocity distributions with a sharp boundary, for 
which the hydromagnetic asymptotics are applicable near the axis simultaneously 
with an additional generation region a t  the velocity jump a t  the boundary. 

Asymptotic estimate (7  b)  has a nature entirely different from all preceding 
estimates. Indeed, SZ and V, do not depend on R, a t  all and their combination 
Imy+mSZ+kV, can be small with the required accuracy only at some (if any) 
points (note that Im y ,  m and k are constants while SZ and V, are functions). Hence, 
(7b)  is actually an equation that determines the ratio of the wavenumbers, m and k, 
of the generated field when the position of the singular layer, r = r,,, has been 
specified. 

Two cases can be distinguished in which asymptotic solutions have distinct forms. 
In  the simplest case when S2 and V, show exactly the same dependence on r ,  i.e. when 
the pitch of a helical streamline, Vz(r)/S2(r), does not depend on radius, certain m and 

and the advection term vanishes identically at  all radii simultaneously while Im y = 
O(R$). Expression (8) determines the ratio of the azimuthal and longitudinal 
wavenumbers of the field generated by such flow ; the position of the field maximum 
will be found in the next section. 
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Note that when (8) is fulfilled the longitudinal velocity V, does not enter explicitly 
the dynamo equations (4) and (5). However, this does not mean that the longitudinal 
velocity is inessential for the generation. When V , + O ,  equation (8) gives m = 0. 
Meanwhile, we know from Cowling's theorem that the axisymmetric field can only 
decay in the velocity field considered. Otherwise, for k +  00 the solenoidality 
condition and the induction equation, namely its z-component, are incompatible, 
which also indicates the impossibility of field growth. 

For another case, viz. when SZ and V, have different radial distributions, expand 
Q+ (Imy+kVz)/m in a Taylor series near the radius r = ro where the field 
concentrates : 

1 k 
- Im y + SZ + - V, = qo + ql(r  - ro)  + qz(r  - r0)' + . . . , 
m m 

where qj are the corresponding derivatives with respect to r evaluated at r = ro that 
are of order unity and do not depend on K,. Meanwhile, matching of the orders of 
magnitude of the generation terms in (4)-(6) requires that (7)  is fulfilled in the 
vicinity r - r o  = O(R2)  of the radius ro where the field concentrates. Hence, the 
generated field has a configuration such that qo = 0 and q1 = 0. The remaining terms 
in the latter expansion are of the required order ( r - r o ) 2  - R;;. Thus, the procedure 
of construction of the asymptotic solution now is as follows. For any given radius 
ro we obtain the ratio of wavenumbers from 

mSZ'(ro) + kVL(ro) = 0, 

where the prime denotes derivatives in r .  For a given m, we derive Im y from 

I m y  = - d 2 ( r o ) - k V z ( r 0 ) .  

Note that there exists one particular magnetic mode for which the pitch of magnetic 
lines equals the pitch of the streamlines a t  this radius : 

and I m y  = O(R;i) for that mode which concentrates at the radius determined by 

i.e. a t  the position where the pitch of the streamlines has an extremum. 
i In the vicinity of the singular layer we have an expansion 

1 k 
- I m y + Q + -  V, = q 2 ( r - r O ) 2 + 0 [ ( ~ - r o ) 3 ]  - Rg m m 

since r - r o  - lid in the region of effective generation. This asymptotic estimate 
should not be interpreted as implying a dependence of the hydrodynamic flow 
pattern on electroconductive properties of the fluid. This estimate merely means that 
magnetic field generation proceeds most effectively within a thin cylindrical layer 
r - ro - l22 where the term Im y + mSZ + kV, has the required small value O(R;i).-f 

t An expansion of the velocity field in powers of the magnetic Reynolds number is also included 
in the well-known dynamo of Braginsky (1964). Braginsky's expansion has a global character, 
V =  V,,(r)+cV,(r)+ .. (localization in the velocity space!), and it follows from the quasi- 
stationary dynamo equations that self-excitation of the field requires B - R;; (Moffatt 1978). In 
this case the field is not necessarily strongly localized in space. 
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Thus, the parameter for our asymptotic expansions is R$ and they are applicable 
when hm $ 1 rather than when R, 4 1,  the latter being a less stringent restriction. 
Correspondingly, the accuracy of the following asymptotic estimates is related to the 
value of R$. 

In this section we have shown that the nature of asymptotic solutions for magnetic 
fields in a laminar helical flow crucially depends on whether s2 and V, are identically 
or differently distributed along the radius. Consider these cases separately. 

3. Identical profiles of Q ( r )  and E ( r )  
The field generated in the case of identical profiles of the angular and longitudinal 

velocities has azimuthal and longitudinal wavenumbers such that equality (8) holds 
and the advection term identically vanishes in the induction equation. In accordance 
with estimates of 92, we seek an asymptotic solution of the WKB type: 

(9) 1 
y = R$(y, + R$y, + R$y2 + . . .), 

H ,  = R;~(h,,+R;~h,,+. ..) exp[ihmS(r)], 

H ,  = (h,, + Rdh,, + . . .) exp Lib, X ( r ) ] ,  

where hjr and hi, are functions of the radius r .  For large magnetic Reynolds numbers, 
the growth rate and configuration of the generated field are determined primarily by 
the lowest-order solution, i.e. by yo, X, hor, h,, and hoz. However, the critical value of 
the magnetic Reynolds number that corresponds to Re y = 0 can be estimated only 
when higher-order approximations for the eigenvalue are evaluated. 

Before proceeding to the evaluation of the asymptotic solution, we discuss some 
general properties of the WKB method as compared with other asymptotic methods. 
An asymptotic solution of a given problem often can be reached by different 
asymptotic methods; forms of the solutions may differ markedly even though they 
are, of course, asymptotically equivalent to each other. For instance, solutions 
described in this section can be obtained both by the WKB method and by the 
boundary-layer expansion. Following an appeal ‘Let all the flowers bloom ’, we 
choose the WKB approach in this section; 94 describes the application of boundary- 
layer expansions to our problem. 

The WKB method has an important advantage : in its framework the derivation 
of a solution reduces to a sequence of standard steps that always results in an explicit 
form of the solution to any order (an example is the WKB solution of three- 
dimensional mean-field dynamo problems by Sokoloff et al. 1983 and Ruzmaikin, 
Sokoloff & Starchenko 1988 b ) .  In  other asymptotic methods approximate equations 
of any order can also be derived without any difficulty but their solution often 
represents a problem no less complicated than the original one. 

The WKB method has a well-known difficulty: its application becomes very 
complicated near turning points where the amplitude factor (h, + R;ih, + . . . in our 
case) is singular. This difficulty restricts application of this method in quantum 
mechanics and plasma physics. Recently V .  P. Maslov has developed a general 
method of derivation of the WKB solution a t  turning points of arbitrary kind (see 
e.g. Maslov & Fedorjuk 1981). It has become clear simultaneously that problems of 
quantum mechanics and wave propagation, where highly excited states are of 
principal importance, involve many more complications in the application of the 
WKB method than, for example, dynamo theory, where the basic and low states are 
in focus. The frequently met opinion that the WKB method is always inapplicable 
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to the analysis of weakly excited states is based on a misunderstanding associated 
with an unfortunate particular scheme of calculations adopted in some textbooks. 
A mathematically rigorous procedure of treatment of low states is called 'the 
oscillatory approximation ' in quantum mechanics. 

From a formal point of view, the wide applicability of the WKB method in 
dynamo problems is due to the fact that, in situations that are interesting for 
dynamo theory, both turning points merge. More precisely, they reside within the 
region of concentration of eigenfunctions of moderately excited states. For the 
asymptotic forms obtained here this is true for eigenmodes with n &, (see below 
for the definition of the level number n). Therefore, the rule of passing through 
turning points reduces to a simple and readily accessible requirement of regularity of 
an eigenfunction a t  its maximum. These arguments are applicable when the effective 
potential is a quadratic function of coordinates near the bottom of a potential 
well. 

We should note that difficulties similar to  those of the WKB method must arise in 
any asymptotic method (in the boundary-layer expansions, in particular) when 
highly excited levels are considered. Indeed, all parameters of the problem (including 
the level number) must not exceed a (large) asymptotic parameter. 

Now we turn to an evaluation of the WKB asymptotic forms (9). Substitution of 
the asymptotic expansions into (4) and ( 5 )  and combination of the terms with 
common powers of R, gives the following equations in the lowest two orders: 

- rQ'h,, + (yo + Xt2) h,, = 0,) 

(111 
\ I  

dr  1 i s  
-rS2'hl, + (yo +S2) h,, = -yl + -+ ix" + 2 i S  - h,,. L 

The homogeneous system of algebraic equations (10) for h,, and h,, has non-trivial 
solutions only when its determinant vanishes, which brings us to the Hamilton- 
Jacobi equation : 

for the action S and the lowest approximation to the eigenvalue, yo. The prime 
denotes derivatives in r .  

We expect that the solution concentrates near a certain radius r = r,. Therefore, 
the action S(r)  must have the maximum a t  this point, i.e. 8'(r,) = 0. I n  addition, 
decrease of the magnetic field strength with distance from the singular layer is 
guaranteed by ImS(r)  > 0 for r > 0 (of course, ImX(0) = 0). 

Since AS" = 0 at r = ro, equation (12) immediately relates yo to the value of mQ'/r 
a t  this point. It is clear that the singular layer must be found at that position where 
Rey, attains its maximal possible value, which implies that  the right-hand side of 
(12) is maximal a t  the point where the field concentrates : 
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These arguments can be exposed a t  another, more formal level. The right-hand side 
of (12) is the Hamiltonian, 

~ ( r , p )  = k(1-i)[ma'(r)/r1~-p2, 

where p = S. The point (ro,po) where the solution concentrates is the singular point 
of the Hamiltonian, i.e. 

This gives p ,  = 0 and equation (13) for the position of the singular layer while 
stability of the singular point requires that ro is the maximum point of Q'/r when the 
plus sign is chosen in (12). Now taking the Hamiltonian-Jacobi equation (12) at  the 
singular point of the Hamiltonian we obtain the eigenvaluet as 

where we have chosen the branches with Re yo > 0, the minus (plus) sign corresponds 
to 52; > 0 (52; < 0 ) ,  and the subscript 0 refers to the singular point r = ro. 

Note that ro determined by (13) differs from zero only for non-monotonic 
dependencies of 52' on r .  For monotonic dependencies and for 152'1 growing slower than 
r we obtain ro = 0. However, all realistic velocity distributions have Q'(0) = 0 and 
V i ( 0 )  = 0 which means that (13) and (14) have no singularity a t  r0 = 0. We should 
also note that one can envisage velocity distributions for which (13) has no solutions. 
In  this case the field generation, if possible a t  all, must proceed in a different manner 
from that prescribed by WKB asymptotic solutions, e.g. with formation of the 
magnetic layers (see $4). 

Now substitute (14) into (12) to obtain the following solution for the action : 

where the minus sign corresponds to 0; > 0 and the plus to 52; < 0. In  both cases 
those branches of the function S are chosen that correspond to Re yo > 0 and 
I m S  > 0. 

For practical purposes, it is sufficient to expand the function lQ'(r)[/r  in a Taylor 
series in the vicinity of the singular point, 

-- 152'1 - -+g , (r -ro)2+.  IQAl . . , r r ,  
which gives 

Thus we have obtained both the zero-order approximation to the field growth rate, 
yo, and the action, S ,  from the Hamilton-Jacobi equation (12). Now, the zero-order 
equations (10) give the ratio of the field components, 

t I n  terms of quantum mechanics, a rough estimate (14) ofithe lowest energy level is simply the 
depth of the potential well for the potential f ( I  - i )  (mQ'/r)Z. 
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rather than the separate components since the determinant of the system (10) 
vanishes. In order to determine, for example, h,, one should use the first-order 
equations (1  1)  which simultaneously yield y1 in the following way. 

The matrix of the left-hand sides of the system (1  1 )  for h,, and h,, coincides with 
the degenerate matrix of the zero-order equations (10). It is well known that the 
degenerate inhomogeneous system of linear algebraic equations (1  1) has non-trivial 
solutions only when the vector of the right-hand sides, L, h,, is orthogonal to the 
eigenvector h,* of the adjoint matrix of the left-hand sides. The matrix L,* adjoint to 
the matrix Lo of (10) has the form 

yo + S12 - rSZ’ 

and the ratio of the components of its eigenvector is given by 

h,*, 2 

Orthogonality of the vectors h,* and Ll h,, i.e. (h; .  r^, h,) = 0, now brings us to the 
following equation for y1 and h,,: 

1 is’ is’ d 
r 2 dr  

- y1 + iS” + - - - - In (r352‘) h,, = 0 

It is sufficient to solve this equation in the vicinity of the singular point. As follows 
from (16), for r + r ,  we have S‘ - ( r - r , )  and s“ - const. Therefore, when r tends 
to ro for r, =l= 0 the last two terms in the square brackets vanish, S‘/r-tO and 
S’d[ln (r3Q’)]/dr + 0. However, for ro = 0 these terms acquire non-vanishing values 
S/r+S”(O) and d[ln (r3SZ’)]/dr+-4/r. Hence, for Ir-r,l < 1 equation (17) takes the 
form 

2iS”(r,) ( r  - r , )  h& + [ -7, + iXN(r,)] h,, = 0 

2ih”’(0) rh& - y1 h,, = 0 

for ro =+ 0 

for ro = 0. and 

Solutions to these equations are homogeneous functions of ( r - r , ) ,  

h,, = (18) 

where n = 0 , 1 , 2 , .  . . for ro =!= 0. However, for ro = 0 we should take into account that 
the azimuthal field must vanish a t  the symmetry axis, i.e. n > 0. Moreover, we have 
h,, cc (r352’)-th,, while SZ’ K r for r+O. Consequently, for ro = 0, h,, is bound a t  the 
axis only when n > 2. Therefore, for ro = 0 in (18) we have n = 2 , 3 , .  . . . 

Using (18) we obtain now 

yl=i(2n+1)X”(r,) for r,+O w i t h n = 0 , 1 , 2 ,  . . .  (19) 

and y1 = Bins”(0) for ro = 0 with n = 2 , 3 ,  . . . . (20) 

Knowing yo and y1 we can give a crude estimate of the critical value of the 
magnetic Reynolds number, which corresponds to  Rey = 0: 
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(for Re y1 > 0 the next approximation, y2, must be used). Since /Re yl( increases with 
n, while Re yo decreases, the mode with the lowest possible value of n, either 0 or 2, 
has the lowest generation threshold and the largest growth rate. Since the terms 
neglected in the estimation of R,,, are of order Rd,  one can expect that  the relative 
accuracy of this estimate is of this order. 

The reliability of estimates of the critical magnetic Reynolds number from 
asymptotic expansions of the eigenvalue crucially depends on the resulting value : 
the larger R,,, is, the more accurate is the estimate. Confidence in such estimates can 
be acquired through comparison with numerical examples. For instance, such a 
comparison was made by Ruzmaikin et al. (1988~) for a screw dynamo in 
Couette-Poiseuille flow. Asymptotic results obtained here agree reasonably well with 
numerical calculations and justify this way of obtaining crude estimates of the 
critical magnetic Reynolds number. Such a comparison of similar asymptotic and 
numerical results for related dynamo problems is also discussed by Baryshnikova & 
Shukurov (1987). 

Note, however, that the last expression for RmCr decreases with m since 
Re yo cc mi and Re y1 cc ma. The reason for this unphysical behaviour of R,,, is that 
the two lowest perturbation orders considered do not include the terms proportional 
to m2 in the induction equation, which describe the azimuthal diffusion of the 
magnetic field. These terms appear only in the second approximation for the 
eigenvalue, y2. The procedure of derivation of the next approximation is principally 
the same as that carried out above for the first approximation. Here we give the 
result (see Sokoloff, Shukurov & Shumkina 1989) : 

while y 2 -  - - k2 = -m2Qi/V,2, 

independently of n. The following estimate for the critical magnetic Reynolds 
number comprises all relevant physical effects : 

for ro  = 0, 

The relative accuracy of this estimate is again expected to be O(R2).  
Thus we have concluded a derivation of the asymptotic solution for the case of 

identical profiles, Q ( r ) /  VJr) = const, having obtained the configuration and growth 
rate of the magnetic field and estimated the critical value of the magnetic Reynolds 
number. Examples of specific velocity distributions are considered in 5 5. 

Above, we have obtained solutions for which I m y  = O(R$) and m and k are 
related by (8). Situations are conceivable when k is prescribed by some external 
factors, e.g. by boundary conditions in the z-coordinate. In such cases (8) cannot be 
fulfilled since m is an integer. In other words, the advection term in the induction 
equation cannot vanish at  all radii simultaneously, notwithstanding the fact that SZ 
and V, have similar distributions. Therefore, the asymptotic forms that arise in these 
cases differ from the WKB type and are similar to the magnetic-layer asymptotics 
discussed in the next section. It is clear that in this case the field growth rate is 
smaller than that for freely growing modes with m and k obeying (8). 
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4. Distinct profiles of Q(r )  and V,(r) 

As shown in $2, in the case of non-identical profiles of the angular and longitudinal 
velocities the advection term in the induction equation never vanishes identically 
but the term q2 R$(r-r,)’ is inherited. The presence of this term in the induction 
equation precludes the WKB-type asymptotic forms. Thus, asymptotic forms that 
arise now are of another nature, of the magnetic-layer type. 

Introduce the new stretched variable 

x = (r-r,)RL 

and consider the Prandtl type of singular layer (cf. Van Dyke 1975): 

y = R2(yo + R$yl + . . .), 
H ,  = RG;[h,,(x) + R$h,,(x) + . . .I, 
H ,  = hO4(x) + R$h,,(x) + . . . . 

Now expand the functions 52 + kVz/m+ Im y / m  and r d52/dr in a Taylor series about 
the radius r = ro:  

= q2x2Ri+q3x3R$+ ..., kVz+Imy 
52+ m 

dS2 
r -  dr  = G,fG,xR$+.  

Here we consider the case when ro =+ 0, i.e. when within the singular layer the value 
of r-,  is not as large as &m. The case ro = 0 requires much more cumbersome 
calculations but does not provide any new physical ideas. 

The asymptotic forms given above are inserted into (4) and ( 5 )  and the coefficients 
a t  the various powers of R$ are equated to zero. The result is the following 

to the zeroth order ; and 

d2h,, 2im 1 dh,, 4im 
dx2 r: ro dx ro yo h,, + imq, xPhlr -___ + __ h,, = - (y l  + imq, x 3 )  ha, + - ~ + xho4, 

d2h 1 dh 
yo h,, + imq, x2h1, - 5 - Go h,, = - (yl + imq, 2,) ha, + - -..@ + G, xh,, 

ro dx 

to  the first order. 

Introduce new variables 
An exact solution to the zero-order equations (23) can be found as follows. 

z = (imq2)&, 7 = (imq,)-~y,,, 

h”, = - i h o r ,  r0 h” - ( i ) i h o 4 .  (2m)s 4 -  Go 



Hydromagnetic screw dynamo 51 

In terms of these variables, (23) recasts as 

where R = (sr. 
This system reduces to - -  a pair of uncoupled stationary Schrodinger equations for 
h+ = i, + ih", and h- = h, - ih, : 

d2h+ 
dZ2 

___ - ( F r i R ) h ,  - 2 h +  = 0, - 

which has the well-known solutions 

h", = Ti&,, 

7 = - ( 2 n + l ) k i R ,  n = 0,1 ,2  , . . . ,  

where H,(r) are Hermite polynomials. 
Now we separate those branches of solutions that, first, decay a t  infinity and, 

second, have Re yo > 0. For different combinations of the signs of Go and q2 the result 
is the following: 

( i )  When Go and q2 have identical signs, 

and 

y o =  ( + l + i )  - [-(2n+1)+1R], I t 
l l i  mq 

h,, = @ exp [ -2 1 $ If21 H,[(imq,)&], 
TO 

h - -(+ 1 +i)  
0, - 

where the upper (lower) sign corresponds to positive (negative) Go and q2 ; in addition, 
the signs of h,, and R can be taken negative in accordance with (25) .  

(i i)  When Go and q2 have different signs, 

and 

where the upper sign corresponds to Go < 0 and q2 > 0, while the lower one 
corresponds to Go > 0 and qz < 0 and the signs of h,, and R can be reversed again. 
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The procedure of solution of the first-order equations (24), which have the 
following operator form 

is quite similar to that for the corresponding equations in the WKB method ($3). 
Since, owing to (23), the operator Ma is degenerate, the vect'or of the right-hand sides 
of (24), Ml(yl)ho, must be orthogonal to the eigenvector h,* of the adjoint operator 
Mt in order for the first-order equations to have non-trivial solutions. The operator 
Ml(yl) includes only multiplications by odd powers of x and single derivatives in 2. 
Therefore, the integrals that enter the scalar product, 

with the bar denoting the complex conjugate, vanish identically and we have 
y1 = 0. The next approximation for the eigenvalue is evaluated by Sokoloff et a1 
(1989). We do not give here the rather cumbersome formulae for the next 
approximation, although use them in the next section. 

5. Discussion 

dimensionless velocity fields given by 
Let us illustrate our results taking as examples arbitrarily chosen simple flows with 

Q =  Vz=rzexp(-r2) ,  (28) 

D = e x p ( - r 2 ) ,  V,= ( i + r 2 ) e x p ( - r z ) ,  (29) 

where the WKB asymptotics arise and 

for which a magnetic layer forms. 
We begin with the flow (28). It follows from (8) that  

m/k=-1  

and the magnetic field concentrates a t  the radius (see (13)) 

ro = 4 2 .  

Now (14) gives yo, while (15) or (16) and (18) determine the eigenfunction. Higher 
approximations for the eigenvalue are given by (19) and (21). Solid lines in figure 1 
show the dependence of the field growth rate, Rey,  on the magnetic Reynolds 
number, with the three lowest approximations taken into account. Notable is a very 
low value of the critical magnetic Reynolds number, Rmcr % 3, which is even below 
the threshold ( z 17) for solid-body screw motion. We should emphasize that this 
estimate is very uncertain and gives only the order of magnitude. Nevertheless, the 
flow considered may indeed be a very efficient dynamo. However, i t  seems to be very 
difficult to produce such flow in laboratory devices or meet it in nature because it 
does not obey the Navier-Stokes equations with any simple pressure distribution. 

It goes beyond the scope of this paper to find flows that have minimal possible 
critical magnetic Reynolds numbers. Here we simply illustrate the difference in 
efficiency between different generation regimes. Consider the flow (29) for which the 
magnetic layer arises at the same radius, ro = 4 2 ,  as for the flow (28). The ratio 
mlk can be found to satisfy 
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0.06 

0.02 

0 1 2 3 4 5 6 

FIGURE 1 .  Dependence of the field growth rate of the modes m = 1 and m = 2 with n = 0, calculated 
a t  three leading orders in R,, on the magnetic Reynolds number for the velocity fields (28) (WKB 
asymptotics, solid lines) and (29) (magnetic-layer asymptotics, dashed lines). In both flows the field 
concentrates a t  the radius ro = d2. 

1% R,  

for Im y = O(R$). Now estimation of the eigenvalue using (27) and y2 calculated 
by Sokoloff et al. (1989) gives the dependence of Re y on R, shown in figure 1 by 
dashed lines. The striking difference between the generation efficiency by these two 
outwardly similar flows needs no comment. We see that the maximal attainable 
growth rate and the critical magnetic Reynolds number are very sensitive to the flow 
configuration. 

It does not follow, however, that  flows with non-identical profiles of 52 and V, are 
generally less effective dynamos than those with identical profiles. One should 
analyse the dependence of the growth rate on the position of the magnetic layer (or, 
which is the same, on the longitudinal wavenumber k for fixed m).  Maximization of 
Re yo from (26) or (27) gives the equation 

for the position corresponding to the maximal possible growth rate. We stress that 
this equation can be solved for a prescribed velocity field before calculation of the 
eigenvalue. 

We should note that the results obtained in $3  can also be obtained by the more 
general boundary-layer analysis of 94. For instance, (19) can be derived by using the 
expansions 

= R ~ ( Y ,  + ~ $ 7 ,  + . , . ), 
r-lH$ = y,[ho(r) + R$hl$(r) + . . .], 

rH,  = - 2imR$[h0(r) + R$hlr(r) + . . .], 
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and seeking a solution in the neighbourhood of the point r = ro a t  which (13) holds 
and where yo is given by (14). The introduction of h, is motivated by the solution of 
the zeroth-order problem in $3. When r ,  + 0, the next-order equations follow from 
(4) and (5) as 

yo(h,, - hl,) = -7, h, + R$h;l- (im/y,) (Q’/r);l Ri(r  - ro)2ho. 

Subtraction yields the equation 

d2h, 
dx2 

( h + X 2 )  h, = 0, -- 

where 

This gives (19). We are grateful to the referee who suggested this derivation. Notice 
the factor R$ in the scaling relation for r - r , .  It would seem that the characteristic 
scale of the WKB solution is R;i instead of RS as asserted in $3. This apparent 
contradiction is due to different understandings of the characteristic scale : Rig IS the 
scale a t  which the field decreases, while R;: is the scale that determines values of 
radial derivatives, W l d r  = O(RL). 

An advantage of the WKB method is that  in those cases when it is applicable it 
always leads to an explicit solution in any order because, apart from the nonlinear 
Hamilton-Jacobi equation, equations of all orders are algebraic or linear first-order 
differential equations. The Hamilton-Jacobi equation can always be solved, a t  least 
by coordinate series expansions. On the other hand, the boundary-layer analysis 
leads to second-order differential equations in every order (for the induction 
equation), which only rarely can be solved in elementary or even special functions. 
Coordinate series expansions cannot be employed in the solution of boundary-layer 
equations since the latter are derived for the fast coordinates. A disadvantage of the 
WKB method is in its applicability only to equations of the special form. 

An example of a helical velocity field that obeys the Navier-Stokes equations is the 
Couette flow between rotating concentric cylinders when the inner one moves in the 
axial direction. When the outer cylinder is a t  rest while the inner one rotates a t  the 
angular velocity 52, and moves along the axis with velocity v,, the velocity field of 
the fluid is given by 

Q = V, = - h T ,  

where the outer cylinder radius b is chosen as the unit length, R is normalized by 
a2Q, / (b2-u2)  and V, normalized by v,/ln ( a / b )  with a being the inner cylinder radius. 
The magnetic fields that concentrate a t  the radius r,, with a /b  < r,, < 1,  have the 
longitudinal wavenumber 

2 k = - -  
mr; ‘ 

The main part of the oscillation frequency is given by 

-(mQ,+kV,,) = m(l-r;’)-2 lnr,/(mT;) 

and the eigenvalue has the following form : 

(d2 - 1 - 2n) + O(Ri1) 1 
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(see (27)). Note that in this flow Rey, has the maximum exactly when the field 
concentrates a t  the inner cylinder. This introduces a correction of the order of 
R$ to y because the eigenfunction can concentrate no closer than a t  the distance 
r,-a = O(R2) from the boundary. 

These results are compatible with results of Solovyev (1985, 1987) who studied 
numerically the screw dynamo for the Couette-Poiseuille flow. In  particular, his 
results show that the growth rate, Re y ,  is indeed proportional to R$. 

It is interesting to compare the forms of the eigenvalue in the case of the WKB 
solutions, (14), (19) and (20), with that for magnetic layers, (25). The essential 
difference is that splitting of magnetic modes in the radial wavenumber, n, occurs in 
the lowest, R$i, order for the magnetic layers, while the splitting is much weaker, of 
the order R&z, for the WKB asymptotics. 

Finally, we note that in realistic flows, e.g. in astrophysical jets, the hydrodynamic 
Reynolds numbers are very high and the flow is turbulent. In  this case the solutions 
obtained here describe the behaviour of the mean magnetic field and v, should be 
replaced by the sum of the turbulent and Ohmic diffusivities. In  astrophysical jets 
the turbulent magnetic Reynolds numbers can be rather large. Indeed, estimation of 
the turbulent diffusivity by vt x lv,/3, where 1 x &r* is the turbulent scale and v, is 
the sound speed, yields R, x 30M, where M = VJv, is the Mach number, which is of 
order 1-10 in the jets (see Bridle & Perley 1984). 

One more class of objects where the screw dynamo may be operative are rotating 
planetary liquid cores where the fluid flow may acquire a helical pattern due to 
meridional circulation. 

We are grateful to J. Freiberg, A. Gailitis and A .  A.  Solovyev for helpful 
discussions and to Tanya Shumkina for assistance. Useful comments of the referees 
are gratefully acknowledged. We are also grateful to Andrew Gilbert for useful 
discussion of our results and showing us his paper prior to publication. 
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